

BOUDOCDI

MATERNAJOBEAEHNA

Санкт-Петербург

МЕТАЛЛОВЕДЕНИЕ. МЕТАЛЛУРГИЯ

УДК 669.15'26'24'786-194:678.789

УПРАВЛЕНИЕ ПРИРОДОЙ δ-ФЕРРИТА В АЗОТСОДЕРЖАЩИХ ХРОМОНИКЕЛЬМАРГАНЦЕВЫХ СТАЛЯХ

А. А. КАЗАКОВ 1 , д-р техн. наук, А. С. ОРЫЩЕНКО 2 , д-р техн. наук, О. В. ФОМИНА 2 , канд. техн. наук, А. И. ЖИТЕНЕВ 1 , Т. В. ВИХАРЕВА 2

¹ ФГАОУ ВО Санкт-Петербургский политехнический университет Петра Великого, 195251 Россия, Санкт-Петербург, Политехническая ул., 29

² НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей», 191015 Россия, Санкт-Петербург, Шпалерная ул., 49, E-mail: <u>mail@crism.ru</u>

Статья поступила 15.02.2016

С помощью термодинамического моделирования изучено поведение δ-феррита при кристаллизации, затвердевании и последующем охлаждении твердой азотсодержащей коррозионно-стойкой стали различного состава. Полученные результаты подтверждены экспериментально и могут быть использованы для обоснования выбора состава стали, а также технологии ее получения на всех переделах, включая горячую пластическую обработку и сварку, при проведении которых δ-феррит при контролируемом его содержании может оказаться полезным. Эти результаты могут применяться также для выбора температурных режимов аустенитизации с целью наиболее полного растворения δ-феррита в готовом металле.

Ключевые слова: азотсодержащая коррозионно-стойкая сталь, δ-феррит, кристаллизация, аустенитизация, термодинамическое моделирование.

Введение

В настоящее время для изготовления крупногабаритных конструкций ответственного назначения, высоконагруженных деталей и изделий различного применения с повышенными требованиями по немагнитности, обеспечиваемой стабильной аустенитной структурой, все большее применение находят азотсодержащие стали. Они выгодно отличаются от традиционных материалов уникальным сочетанием прочности, пластичности, ударной вязкости и могут применяться для работы в условиях воздействия высоких эксплуатационных нагрузок, в том числе в агрессивной коррозионной среде. Производство полуфабрикатов из азотсодержащих сталей с таким уникальным комплексом свойств сопряжено с рядом технологических трудностей, связанных с особенностями процессов фазо- и структурообразования при горячей деформации, сварке и термической обработке [1–8].

Важную роль в процессе структурообразования стали при последующих технологических переделах играет металлургическая наследственность структуры, сформированной при кристаллизации и затвердевании. В зависимости от соотношения Сг_{экв}/Ni_{экв} кристаллизация осуществляется через аустенит или через δ-феррит с последующим образованием аустенита по разным механизмам [15, 17–20]. Граница областей, в которых реализуются эти два типа кристаллизации, была определена с помощью термодинамического моделирования в работе [21]. Результаты этих расчетов отображены в виде новой линии внутри аустенитной области диаграммы Шеффлера [9], уточненной в более поздних работах [10–16]. Другие исследователи связывали количество и природу образующегося δ-феррита с химическим составом стали [22], условиями кристаллизации [23], в том числе с учетом конкурентного роста δ-феррита и аустенита [24], а также с условиями дальнейшего

охлаждения твердой стали [25]. В работе [26] термодинамическое моделирование было использовано для обоснования присутствия δ -феррита при разных режимах термодеформационной обработки.

В литературе информация о влиянии δ -феррита на горячую пластичность стали при прокатке довольно противоречива. Если в работе [27] показано, что зависимость горячей пластичности от содержания δ -феррита имеет экстремальный характер с максимумом при 3 об.% δ -феррита в литом металле, то в работах [28, 29] авторы утверждают, что протяженность границы аустенит/ δ -феррит отрицательно влияет на горячую пластичность стали. В работе [30], наоборот, положительное влияние δ -феррита на горячую пластичность стали объясняют повышением сопротивления распространению трещины. Известно, что небольшое содержание δ -феррита оказывается полезным при сварке и повышает горячую трещиностойкость сварного соединения [31–33]. К таким же выводам пришли авторы работ [34, 35], которые установили, что кристаллизация в присутствии δ -феррита снижает риск возникновения кристаллизационных трещин в сварных швах.

Цель настоящей работы — исследование природы образования δ -феррита и его эволюции на всех этапах получения хромоникельмарганцевых азотсодержащих сталей — от кристаллизации и затвердевания до готового металла. Результаты исследования могут быть использованы при выборе оптимальных составов и технологических параметров производства азотсодержащих сталей.

Материалы и методика исследований

Сталь для исследований выплавляли в открытой индукционной печи емкостью 40 кг. Использовали чистые шихтовые материалы: электротехническую сталь 10880, металлический хром марки X99H1, марганец Мн95, никель катодный, ферромолибден FeMo60, феррониобий FeNb70, феррованадий FeV70. В качестве азотсодержащего материала использовали азотированный феррохром ФХН10. Технология выплавки включала расплавление шихтовых материалов (железо, хром, марганец, молибден, никель) и присадку ферросилиция с последующей присадкой феррониобия и феррованадия. Затем после раскисления алюминием и присадки азотированного феррохрома проводили разливку готовой стали через промежуточный ковш в слитки массой 0,7 кг. Состав этих слитков, а также требования нормативно-технической документации (НТД) к составу исследуемой стали приведены в таблице.

Состав	Содержание элементов, мас. %										
	C	Si	Mn	P	S	Cr	Ni	Mo	Nb	V	N
НТД	0,04	0,1-0,5	10-12	0,25	0,01	19-21	5–7	1,3-1,8	0,05-0,15	0,1-0,2	0,45-0,55
П1	0,04	0,5	9,4	0,001	0,001	18,9	8,4	1,35	0,05	0,1	0,55
П2	0,03	0,3	10,8	0,001	0,001	20,0	5,4	1,30	0,08	0,16	0,51
П5	0,03	0,4	10,9	0,001	0,001	20,5	7,3	1,22	0,07	0,13	0,6
П6	0,06	0,6	12,3	0,01	0,005	17,6	5,4	1,75	0,11	0,17	0,45

ХИМИЧЕСКИЙ СОСТАВ ИССЛЕДОВАННЫХ СТАЛЕЙ

Возможность растворения остаточного δ-феррита в стали при термической обработке (аустенитизации) изучали методом закалки проб по ходу изотермических выдержек при различных температурах. Из закаленных проб изготавливали шлифы и определяли объемную долю феррита.

Микроструктуру образцов исследовали в литом состоянии и после термической обработки по различным режимам. Для выявления микроструктуры использовали травление реактивом состава 10 мл HCl+90 мл H_2O+1 г $Na_2S_2O_5$. Травление проводили погружением шлифа в реактив на 15 с. Для удаления шлама травленый образец полировали в течение 3 с на ворсистой ткани с суспензией на основе корунда с фракцией частиц 0,05 мкм. Объемную долю δ -феррита измеряли на панорамных изображениях, полученных с помощью моторизованного оптического мик-

роскопа Zeiss Axiovert 200 MAT, оснащенного анализатором изображений Thixomet PRO. Параллельно проводили оценку содержания δ -феррита объемным методом на полированной поверхности площадью 1 см² с помощью ферритометра FMP 30.

Для выявления дендритной и зеренной структуры стали использовали ту же методику, что и для выявления δ -феррита, но время травления увеличили (30–120 с) до появления цветов побежалости на поверхности шлифа.

Термодинамическое моделирование проводили с помощью программного обеспечения FactSage. Для определения границы областей сталей, кристаллизующихся через аустенит и через δ -феррит, проводили термодинамическое моделирование процессов кристаллизации и затвердевания исследуемых сталей в равноотстоящих узловых точках аустенитной области диаграммы Шеффлера — Шпайделя, прилегающей к двухфазной области аустенит + δ -феррит, по методике, использованной в работе [21]. Результаты этих расчетов изображены новой линией внутри аустенитной области диаграммы Шеффлера — Шпайделя [15]. С r_{3KB} и Ni_{3KB} рассчитывали по следующим формулам [15]:

$$Cr_{_{3KB}}$$
= $Cr + 1.5 \text{ Mo} + 1.5 \text{ W} + 0.48 \text{ Si} + 2.3 \text{ V} + 1.75 \text{ Nb} + 2.5 \text{ Al};$
 $Ni_{_{3KB}}$ = $Ni + Co + 0.1 \text{ Mn} - 0.01 \text{ Mn}^2 + 18\text{N} + 30 \text{ C}.$

Распределение химических элементов в стали определяли с помощью ЭДС Oxford Instruments X-Max 80, установленного на PЭM Zeiss Supra 55VP.

Природа б-феррита в азотсодержащей аустенитной стали

В соответствии с результатами термодинамического моделирования (рис. 1) можно различить разную природу δ -феррита в зависимости от того, когда он образовался, насколько успел раствориться при взаимодействии с жидкой сталью при перитектической реакции, а также при снижении температуры твердой стали ниже температуры солидуса или после аустенитизации.

Рис. 1. Изменение содержания δ -феррита при кристаллизации, затвердевании и охлаждении твердой стали состава 0,05%C-0,3%Si-10%Mn-21%Cr-5%Ni-0,45%N-1,5%Mo

Для заданного состава стали (рис. 1) можно выделить несколько важных температурных диапазонов, ограниченных соответствующими критическими точками:

- $-\Delta T_{\delta}$, в котором образовавшийся при кристаллизации δ -феррит взаимодействует с жидкой сталью с образованием аустенита по перитектической реакции. Фактически это интервал кристаллизации $T_1 T_s$;
- $-\Delta T_{\text{техн}}$, в котором δ -феррит растворяется в аустените при снижении температуры твердой стали ниже температуры солидуса. При быстром охлаждении твердой стали возможны кинетические ограничения растворения δ -феррита, поэтому в литой стали можно наблюдать его остаточное содержание;

- $\Delta T_{\rm ауст}$, в котором при достаточном времени выдержки δ -феррит, оставшийся после кристаллизации и затвердевания и не успевший раствориться при охлаждении твердой стали в диапазоне температур $\Delta T_{\rm техн}$, должен полностью раствориться в аустените. Температура аустенитизации для стали данного химического состава выбирается в диапазоне $\Delta T_{\rm ауст}$ и должна быть достаточно высокой, чтобы обеспечить диффузионную подвижность легирующих элементов в стали, но не настолько высокой, чтобы достигнуть температуры начала образования δ -феррита $T_{\rm aycr}^{\rm max}$;
- ΔT_{α} , в котором из аустенита выделяется феррит, участвующий в эвтектоидной реакции образования σ -фазы [15], однако развитие этого процесса кинетически заторможено и его можно не принимать во внимание.

На рис. 2 показано влияние состава стали на положение приведенных выше температурных диапазонов, ограниченных соответствующими критическими точками. Повышение в стали концентрации никеля и азота с одновременным снижением концентрации хрома закономерно приводит к уменьшению количества δ -феррита, образующегося в температурном интервале ΔT_{δ} , расширению температурного интервала $\Delta T_{\text{ауст}}$ и сужению интервала $\Delta T_{\text{техн}}$ (рис. 2).

Рис. 2. Влияние хрома, никеля (a) и азота (δ) на поведение δ -феррита при кристаллизации, затвердевании и охлаждении твердой стали

Таким образом, по составу стали можно прогнозировать поведение δ -феррита при кристаллизации, затвердевании и последующем охлаждении твердой стали для управления его содержанием при последующих технологических переделах (горячей пластической обработке, сварке), а также для наиболее полного растворения δ -феррита в готовом металле после аустенитизации.

Обсуждение результатов

На рис. 3 показана усовершенствованная диаграмма Шеффлера — Шпайделя. Серым цветом на ней отмечена расчетная область кристаллизации через δ -феррит. Прямоугольник, обозначенный пунктирной линией, отображает требования НТД к химическому составу стали.

Область составов сталей, кристаллизующихся через δ -феррит, получена с помощью термодинамического моделирования и хорошо согласуется с известными из литературы соотношениями $Cr_{_{2KB}}/Ni_{_{2KB}}$, разделяющими на диаграмме Шеффлера — Шпайделя области с различными механизмами кристаллизации [15], а также с результатами работы [21], в которой эта область была рассчитана для азотсодержащей стали с низким содержанием никеля. Небольшие расхождения полученных в настоящей работе и известных из литературы данных о положении области составов сталей, кристаллизующихся через δ -феррит, объясняются различными способами расчета $Cr_{_{2KB}}$ и $Ni_{_{2KB}}$.

Рис. 3. Диаграмма Шеффлера – Шпайделя и фигуративные точки состава опытных сталей

Анализ требований НТД к химическому составу стали

Анализ требований НТД к химическому составу стали $04X20H6\Gamma11M2A\Phi E$ показывает, что в зависимости от соотношения Cr_{3KB}/Ni_{3KB} (прямоугольник, обозначенный пунктирными линиями на рис. 3), реализуются абсолютно различные механизмы кристаллизации стали (рис. 4).

Рис. 4. Поведение δ-феррита при кристаллизации, затвердевании и охлаждении твердой стали с предельным по HTД содержанием элементов (термодинамическое моделирование)

Например, при кристаллизации стали с максимальным $Cr_{_{3кв}}$ и минимальным $Ni_{_{3кв}}$ (кривая I на рис. 4) образуется до 50% δ -феррита, который в значительном количестве (7–9%) остается в твердой стали при комнатной температуре. Как следует из расчетов (кривая I на рис.4), для таких сталей отсутствует температурный диапазон аустенитизации (ΔT_{aycr}), поэтому их невозможно получить немагнитными, несмотря на то, что их состав соответствует требованиям НТД.

В стали с минимальным $Cr_{3кв}$ и минимальным $Ni_{3кв}$ при кристаллизации образуется до 70% δ -феррита, однако при отсутствии кинетических ограничений уже при температуре 1240°C он должен полностью раствориться (кривая 2 на рис. 4). Если же такие ограничения имеются и в литой стали обнаружено значительное количество остаточного δ -феррита [23–25], то нагрев и соответствующая выдержка при температуре аустенитизации в диапазоне $\Delta T_{\rm ayer}$ приведет к его полному растворению [26].

В сталях с оставшимися двумя сочетаниями Cr_{3KB} и Ni_{3KB} (кривые 3 и 4 на рис. 4) при кристаллизации образуется не более 7–12% δ -феррита, и эти стали

имеют широкий температурный диапазон $\Delta T_{\text{ауст}}$. Поэтому остаточный δ -феррит в них легко растворятся при температуре аустенитизации.

Таким образом, с учетом требований по немагнитности химический состав стали 04X20H6Г11М2АФБ должен быть скорректирован, так как при изменении концентрации легирующих элементов в соответствии с существующей НТД поведение δ-феррита при кристаллизации, затвердевании и охлаждении в твердом состоянии настолько различно, что в четверти всех возможных композиций стали не обеспечивается растворение δ-феррита даже после аустенитизации. Составы сталей, которые можно получить немагнитными, должны находиться в аустенитной области диаграммы Шеффлера – Шпайделя (рис. 3). Чтобы обеспечить одинаковые возможности полной аустенитизации стали, кристаллизующейся через δ-феррит, ее состав должен изменяться так, чтобы соответствующая этому составу фигуративная точка перемещалась вдоль границы областей аустенит – аустенит + δ-феррит. Пример таких составов приведен на рис. 3 (красный многоугольник). Эти составы обеспечат одинаковую природу δ-феррита с гарантией немагнитности исследуемой стали, по крайней мере, после аустенитизации.

Анализ опытного металла в литом состоянии

Рассмотрим составы опытных сталей (см. таблицу), пересчитанные в Cr_{3KB} и Ni_{3KB} и расположенные на усовершенствованной диаграмме Шеффлера—Шпайделя (рис. 3). Так, в результате кристаллизации через аустенит стали составов П1 и П5 при комнатной температуре имеют полностью аустенитную структуру (рис. 5, a, δ).

Рис. 5. Микроструктура сталей опытных составов Π 1 (*a*), Π 5 (*б*), Π 6 (*в*), Π 2 (*г*) в литом состоянии

Дендритная структура этих сталей находится в полном соответствии с зеренной структурой: отдельное аустенитное зерно образовано из единого дендрита со свойственной только ему кристаллографической ориентацией. После пленочного травления и последующего анализа в поляризованном свете каждое из таких зерен окрашивается своим цветом.

При кристаллизации сталей через δ -феррит (составы П6 и П2) его остаточные содержания (1,5 и 5,6 об. % соответственно) сосредоточены в центре дендритных осей, а дендритная структура не соответствует зеренной: ось первого порядка од-

ного дендрита проходит по телу нескольких аустенитных зерен, сформировавшихся после затвердевания (рис. 5, θ и ε).

Исследование кинетики растворения б-феррита

Результаты исследования кинетики растворения δ -феррита в сталях составов $\Pi 2$ и $\Pi 6$ при аустенитизации показаны на рис. 6, a и δ соответственно.

Рис. 6. Кинетика растворения δ-феррита (a, δ) и результаты термодинамического моделирования его поведения при кристаллизации, затвердевании и охлаждении твердой стали (s, ϵ) : a, s и δ, ϵ – для сталей составов $\Pi 2$ и $\Pi 6$ соответственно

С повышением температуры и увеличением времени выдержки т содержание δ -феррита в стали закономерно снижается [23, 26]. Для стали состава П2 скорость растворения δ -феррита значительно ниже, чем для стали состава П6. Это связано не только с более высоким исходным содержанием в этой стали остаточного δ -феррита (5,6% в стали состава П2 против 1,5% в стали состава П6), но и тем, что аустенитизация проводилась при температурах, близких к температуре существования δ -феррита в этой стали (1200°C для стали П2 против 1340°C для стали П6).

На рис. 7 показана микроструктура опытных сталей после аустенитизации при температуре 1060° С и времени выдержки 100 мин. Для стали состава $\Pi1$, расположенной на диаграмме Шеффлера-Шпайделя глубоко в аустенитной области (рис. 3), характерна четкая дендритная структура (рис. 7, a), как и в исходном литом состоянии (рис. 5, a). Для стали $\Pi5$, расположенной на границе областей с разным механизмом кристаллизации — через аустенит и через δ -феррит (рис. 3), дендритные ветви все еще хорошо различимы, но уже отмечается некоторая размытость рисунка (рис. 7, δ) по сравнению с литым состоянием (рис. 5, δ).

Для стали состава П6, при кристаллизации которой образуется до 8% δ -феррита (рис. 6, ε), дендритный рисунок сильно размыт (рис. 7, ε) и значительно отличается от литого состояния (рис. 5, ε). В стали состава П2, при кристаллизации которой образуется до 50% δ -феррита (рис. 6, ε), дендритный рисунок, наблюдаемый в литом состоянии (рис. 5, ε), практически утрачен (рис. 7, ε) при аустенитизации. Аналогичные закономерности, но на других высокоазотистых нержавеющих сталях обнаружены авторами работы [21].

Такие закономерности в изменении дендритного рисунка могут отражать изменение химической неоднородности в сталях, кристаллизующихся через δ-феррит и подвергнутых аустенитизации. Поэтому рассмотрим результаты исследования химической неоднородности в литом состоянии и после аустенитизации, полученные с помощью рентгеновского микроанализа на растровом электронном микроскопе.

Рис. 7. Микроструктура стали составов П1 (a), П5 (δ) , П6 (s), П2 (ε) после выдержки при температуре 1060°C в течение 100 мин и последующей закалки в воду

Фигуративная точка для стали состава $\Pi 1$ находится глубоко в аустенитной области (рис. 3), поэтому в литом состоянии (рис. 8, a) и после аустенитизации (рис. 8, δ) характер распределения легирующих элементов практически не изменился.

Рис. 8. Изображение дендритных осей во вторичных электронах и концентрационные профили хрома, марганца, никеля и молибдена вдоль линий сканирования (сталь состава П1):

a – литое состояние; б
 – выдержка при 1060°C, 100 мин, закалка в воду

Фигуративная точка для стали состава П5 расположена на границе областей кристаллизации через аустенит и через δ -феррит (рис. 3), поэтому в этой стали происходит заметное снижение химической неоднородности (по марганцу и особенно по молибдену) после аустенитизации (рис. 9, δ) по сравнению с литым состоянием.

Рис. 9. Изображение дендритных осей во вторичных электронах и концентрационные профили хрома, марганца, никеля и молибдена вдоль линий сканирования (сталь состава П5): a – литое состояние; δ – выдержка при 1060°C, 100 мин, закалка в воду

В сталях составов П6 и П2 выявлена значительная неоднородность распределения хрома и молибдена (рис. 10, a и 11, a) в зонах, которые соответствуют расположению остаточного δ -феррита по сечению литой структуры.

Рис. 10. Электронные изображения дендритных осей и концентрационные профили хрома, марганца, никеля и молибдена вдоль линии сканирования (сталь состава Π 6): a – литое состояние; δ – выдержка 100 мин при 1060°C и закалка в воду

После аустенитизации δ -феррит растворяется, при этом концентрационные пики хрома и молибдена в зоне расположения δ -феррита, закономерно исчезают (рис. 10, δ и 11, δ). Характер распределения стабилизирующих аустенит элементов (никеля и марганца) после аустенитизации этих сталей изменяется незначительно.

Рис. 11. Электронные изображения дендритных осей и концентрационные профили хрома, марганца, никеля и молибдена вдоль линии сканирования (сталь состава $\Pi 2$): a – литое состояние; δ – выдержка 100 мин при 1060°C и закалка в воду

Достоверность оценки δ -феррита методами панорамной количественной металлографии, используемой в настоящей работе, доказана результатами измерений содержания остаточного δ -феррита при помощи ферритометра. Результаты измерений обоими методами, основанными на различных физических принципах, практически совпадают (рис. 12).

Рис. 12. Сопоставление результатов определения δ-феррита с помощью ферритометра и металлографическим методом

ЗАКЛЮЧЕНИЕ

Методами термодинамического моделирования изучено поведение δ -феррита при кристаллизации, затвердевании и последующем охлаждении азотсодержащей стали различного состава. Для этих условий найдены критические точки, ограничивающие температурные диапазоны выделения и растворения δ -феррита при кристаллизации стали и ее последующем охлаждении. Полученные результаты могут быть использованы для обоснования состава стали и технологии ее получения на всех переделах, включая горячую пластическую обработку и сварку, при проведении которых контролируемое содержание δ -феррита может оказаться полезным, а также выбора температурных режимов аустенитизации для наиболее полного растворения δ -феррита в готовом металле.

Установлено, что при изменении концентрации легирующих элементов в стали $04X20H6\Gamma11M2A\Phi E$ поведение δ -феррита при кристаллизации, затвердевании и охлаждении в твердом состоянии настолько различно, что в четверти всех возможных в рамках действующей НТД композиций стали не обеспечивается формирование полностью аустенитной структуры из-за отсутствия температурного диапазона аустенитизации. Чтобы обеспечить одинаковые возможности полной аустенитизации сталей, кристаллизующихся через δ -феррит, их состав должен изменяться вдоль границы областей аустенит – аустенит + δ -феррит со стороны аустенитной области диаграммы Шефлера — Шпайделя. Такие стали обеспечат одинаковую природу δ -феррита с гарантией ее немагнитности, по крайней мере после аустенитизации.

C помощью метода термодинамического моделирования усовершенствована диаграмма Шеффлера—Шпайделя, на которой в рамках аустенитной области найдена граница, разделяющая составы сталей, кристаллизующихся через аустенит и через δ -феррит. Изучены особенности структуры сталей, кристаллизующихся по этим механизмам. В случае кристаллизации через аустенит дендритная и зеренная структуры совпадают: каждое аустенитное зерно образовано из одного дендрита с характерной кристаллографической ориентацией, выявленной пленочным травлением. В случае кристаллизации через δ -феррит дендритная и зеренная структуры не совпадают: ось первого порядка одного дендрита проходит по телу нескольких аустенитных зерен.

Установлены закономерности образования и последующего изменения при аустенитизации структурной и химической неоднородности изученных сталей. При кристаллизации через аустенит структурная и химическая неоднородности после аустенитизации остаются неизменными. По мере углубления процессов кристаллизации через δ -феррит структурная и химическая неоднородности после аустенитизации снижаются тем больше, чем больше δ -феррита было образовано на начальных этапах кристаллизации.

Изучена кинетика растворения δ -феррита в исследованных сталях. Результаты этих исследований интерпретированы с помощью термодинамического моделирования и позволяют обоснованно назначать температурно-временные условия аустенитизации для сталей разного состава.

ЛИТЕРАТУРА

- 1. Банных О. А., Блинов В. М., Костина М. В. Исследование эволюции структуры азотистой коррозионно-стойкой аустенитной стали 06Х21АГ10Н7МФБ при термодеформационном и термическом воздействии // Вопросы материаловедения. − 2006. № 1 (45). С. 9–20.
- 2. Блинов Е. В., Хадыев М. С. Исследование структуры и механических свойств коррозионно-стойких азотистых сталей $04X22A\Gamma15H8M2\Phi$ и $05X19A\Gamma10H7M2\Phi$ Б после горячей деформации // Металлы. 2012. N2. С. 93–99.
- 3. Коджаспиров Г. Е., Сулягин Р. В., Карьялайнен Л. П. Влияние температурнодеформационных условий на упрочнение и разупрочнение азотистых коррозионно-стойких сталей // Металловедение и термическая обработка металлов. 2005. № 11 (605). С. 22–26.
- 4. Блинов В. М., Пойменов И. Л., Куликова О. И., Карелин Ф. Р., Шурыгина И. А., Глебов В. В., Каленихин Ю. Н. Влияние горячей деформации на структуру и механические свойства азотистых немагнитных сталей // Структура и физико-механические свойства немагнитных сталей. М.: Наука, 1986. С. 30–33.
- 5. Калинин Г. Ю., Мушникова С. Ю., Нестерова Е. В., Фомина О. В., Харьков А. А. Исследование структуры и свойств высокопрочной коррозионно-стойкой азотистой стали 04X20H6Г11М2АФБ // Вопросы материаловедения. 2006. № 1(45). С. 45–54.
- 6. Сагарадзе В. В., Уваров А. И.. Печеркина Н. Л., Калинин Г. Ю., Мушникова С. Ю. Влияние упрочняющей обработки на структуру и механические свойства закаленной азотсодержащей аустенитной стали $04X20H6\Gamma11M2A\Phi$ // Металловедение и термическая обработка металлов. − 2008. № 10 (640). С. 33–38.

- 7. Калинин Г. Ю., Малышевский В. А., Мушникова С. Ю., Ямпольский В. Д. Влияние режима горячей пластической деформации на механические свойства и структуру высокопрочных коррозионно-стойких аустенитных сталей, легированных азотом // Вопросы материаловедения. 2002. № 2 (30). С. 5–11.
- 8. Калинин Г. Ю., Малышевский В. А., Мушникова С. Ю., Петров С. Н., Ямпольский В. Д. Влияние степени горячей пластической деформации на микроструктуру и механические свойства аустенитной высокопрочной коррозионно-стойкой стали $05X19H5\Gamma12AM2E\Phi$ // Вопросы материаловедения. 2003. N2 4 (36). С. 5–11.
 - 9. Schaffler A. I. Constitution diagram for stainless steel weld metal // Metal Progress. 1949. № 56.
- 10. Delong W. T., Ostorm G. A. Szumachowski E. R. Measurement and calculation of ferrite in stainless steel weld metal // Welding Journal. 1956. N_2 35 (11). P. 521–528.
- 11. Hull F. C. Delta Ferrite and Martensite Formation in Stainless Steels // Welding Journal. 1973. V. 52 (5), May, Res. Suppl. P. 193–203.
- 12. Linnert G. E. Type 347 Stainless Steel Piping and Tubing // Welding Research Council Bulletin Series. -1958.-N 43.
- 13. Липпольд Д., Котески Д. Металлургия сварки и свариваемость нержавеющих сталей. СПб.: Изд-во Политехн. ун-та, 2011. 467 с.
- 14. . Olson D. L. Flux composition dependence of microstructure and toughness of submerged arc HSLA weldments // Welding Journal. -1985, -N64, -P281.
- 15. Speidel M. High Nitrogen Steels // Proceedings of the 10th International Conference HNS 2009. P. 121.
- 16. Uggowitzer P. J., Magdowski R., Speidel M. O. Nickel Free High Nitrogen Austenitic Steels // ISIJ International. 1996. V. 36, N 7. P. 901–908.
- 17. Allan G. Castability solidification mode and residual ferrite distribution in highly alloyed stainless steels // European Commission EUR 13941–Steelmaking, 1997. P. 85.
- 18. Petrovič D. S., Klančnik G., Pirnat M., Medved J. Differential scanning calorimetry study of solidification sequence of austenitic stainless steel // Journal of Thermal Analysis and Calorimetry, July 2011. V. 105, Is. 1. P. 251–257.
- 19. Brooks J. A., Thompson A. W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds // Int. Mater. Rev. 1991. V. 36, N 16.
- 20. Siegel U., Spies H. J., Eckstein H. J. Effect of solidification conditions on the solidification sequence of austenitic chromiumnickel stainless steels // Steel Res. 1986. V. 57, N 25.
- 21. Казаков А. А., Шахматов А. В., Колпишон Э. Ю. Литая структура и наследственность высокохромистой стали с азотом // Тяжелое машиностроение. 2015. № 1–2. С. 19-24.
- 22. Martorano M. A., Tavares C. F. Padilha A. F. Predicting Delta Ferrite Content in Stainless Steel Castings // ISIJ International. 2012. V. 52, N 6. P. 1054–1065.
- 23. Fukumoto S., Iwasaki Y., Motomura H., Fukuda Y. Dissolution Behavior of-ferrite in Continuously Cast Slabs of SUS304 during Heat Treatment // ISIJ International. 2012. V. 52, N 1. P. 74–79.
- 24. Shen L. J., Ma Y. L., Xing S. Q. The Morphology and Content of δ Ferrite in Non-Equilibrium Solidified 0Cr18Ni9 Austenitic Stainless Steel // Advanced Materials Research. 2012. V. 535–537. P. 666–669.
- 25. Fu J. W., Yang Y. S., Guo J. J., Tong W. H. Effect of cooling rate on solidification microstructures in AISI 304 stainless steel // Materials Science and Technology. 2008. V. 24, N 8. DOI 10.1179/174328408X295962
- 26. Saied M. Experimental and numerical modeling of the dissolution of delta ferrite in the Fe-Cr-Ni system: application to the austenitic stainless steels // Materials University Grenoble, Alpes, 2016. NNT: 2016GREAI016.
- 27. Ljungstrom L. G. The Influence of Trace Elements on the Hot Ductility of Austenitic 17CrI3NiMo-Steel // Scand. J. Metall. 1977. V. 6, N 176.
- 28. Demk H. Deformation under Hot Working Conditions. London: The Iron and Steel Institute, 1968. P. 135.
- Pickering, F. B., Physical Metallurgy and the Design of Steels London, Applied Science Publishers,
 1978.
 - 30. Kane R. H. The Hot Deformation of Austenite. Pergamon Press, 1977. P. 457.

- 31. Brooks J. A., Thompson A. W., Williams J. C. A fundamental study of the beneficial effects of δ -ferrite in reducing weld cracking // Weld. J. 1984. N 63. P. 71–83.
- 32. Brooks J. A. Weldability of high N, high-Mn austenitic stainless steel // Weld. J. 1975. N 54. P. 189–195.
- 33. Priceputu I. L., Moisa B., Chiran A., Nicolescu G., Bacinschi Z. Delta Ferrite Influence in AISI 321 Stainless Steel Welded Tubes // The Scientific Bulletin of VALAHIA University: Materials and Mechanics. 2011. N 6 (year 9). P. 87–96.
 - 34. Kujanpaa V. P., David S. A., White C. L. // Welding Research Supplement. 1986. August.
- 35. Lundin C. D., Lee C. H. and Menon R. Hot Ductility and Weldability of Free Machining Austenitic Stainless Steel // Welding Research Supplement. 1988. N 120-s, June.

CONTROL OF DELTA-FERRITE NATURE IN NITROGEN-CONTAINING CHROMIUM-NICKEL-MANGANESE STEELS

A. A. KAZAKOV 1 , Dr. Sc., A. S. ORYSHCHENKO 2 , Dr. Sc., O. V. FOMINA 2 , PhD (Eng.), A. I. ZHITENEV 2 , T. V. VIKHAREVA 2

¹Peter the Great St. Petersburg Polytechnic University, 195251 Russia, St Petersburg, Polytechnicheskaya street, 29

² NRC"Kurchatov Institute" – CRISM "Prometey", 49, Sphalernaya St, 191015, St Petersburg, Russian Federation FSUE. E-mail: mail@crism.ru

Received February 15, 2017

Abstract—Behavior of δ -ferrite during crystallization, solidification and subsequent cooling of solid nitrogen-containing stainless steel of different compositions has been studied by thermodynamic simulation methods. The results were confirmed experimentally and can serve as a basis to justify the composition and processing parameters of steel at all stages, for example, to provide the controlled δ -ferrite content during the hot plastic deformation and welding or most complete dissolution of δ -ferrite during the austenitization.

Keywords: nitrogen-containing stainless steel, δ -ferrite, crystallization, austenitization, thermodynamic simulation.

DOI: 10.22349/1994-6716-2017-89-1-00-00

REFERENCES

- 1. Bannykh, O.A., Blinov, V.M., Kostina, M.V., Issledovanie evoliutsii struktury azotistoy korrozion-no-stoykoy austentnoy stali 06Kh21AG10N7MFB pri termodeformatsionnom i termicheskom vozdeystvii [A study of the evolution of nitrous structure of austenite corrosion-resistant steel 06Kh21AG10N7MFB under thermal deformation and thermal influence], Voprosy Materialovedeniya, 2006, No 1 (45), pp. 9–22.
- 2. Blinov, E.V., Khadyev, M.S., Issledovanie struktury i mekhanicheskikh svoistv korrozionnostoykikh vysokoazotistykh staley 04Kh22AG15N8M2F i 05Kh19AG10N7M2FB posle goriachey deformatsii [Study of the structure and mechanical properties of corrosion-resistant steels 04Kh22AG15N8M2F and 05Kh19AG10N7M2FB after hot deformation], Metally, 2012, No 2, pp. 93–99.
- 3. Kodjaspirov, G.E., Sulyagin, R.V., Karjalainen, L.P., Effect of temperature and deformation conditions on hardening and softening of nitrogen-bearing corrosion-resistant steels, Metal Science and Heat Treatment, 2005, V. 47, Is. 11–12, pp. 502–506.
- 4. Blinov, V.M., Poymenov, I.L., Kulikova, O.I., Karelin, F.R., Shurygina, I.A., Glebov, V.V., Kalenikhin, Yu.N., Vliyanie goryachey deformatsii na strukturu i mekhanicheskie svoistva vysokoazotistykh nemagnitnykh staley [Hot deformation effect on the structure and mechanical properties of high-nitrogen nonmagnetic steels], Struktura i fiziko-mekhanicheskie svoistva nemagnitnykh staley [Structure and physico-mechanical properties of non-magnetic steels], Moscow: Nauka, 1986.
- 5. Kalinin, G.Yu., Mushnikova, S.Yu., Nesterova, E.V., Kharkov, A.A., Issledovanie struktury i svoistv vysokoprochnoy korrozionno-stoikoy azotistoy stali 04Kh20N6G11M2AFB [Investigation of the structure and properties of high-strength corrosion-resistant steel nitrogenous 04Kh20N6G11M2AFB], Voprosy Materialovedeniya, 2006, No 1(45), pp. 45–54.
- 6. Sagaradze, V.V., Uvarov, A.I., Pecherkina, N.L., Kalinin, G.Yu., Mushnikova, S.Yu., Effect of strengthening treatment on the structure and mechanical properties of hardened nitrogen-bearing austenitic steel 04Kh20N6G11AM2BF, Metal Science and Heat Treatment, 2008, No 10 (640), pp. 33–38.
- 7. Kalinin, G.Yu., Yampolsky, V.D., Vliyanie rezhima goriachey plasticheskoy deformatsii na mekhanicheskie svoistva i strukturu vysokoprochnykh korrozionno-stoykikh austenitnykh staley, legirovannykh azotom [Effect of hot plastic deformation regime to the structure and mechanical properties of high corrosion-resistant austenitic steels alloyed with nitrogen], Voprosy Materialovedeniya, 2002, No 2 (30), pp. 5–11.

- 8. Kalinin, G.Yu., Malyshevsky, V.A., Mushnikova, S.Yu., Petrov, S.N., Yampolsky, V.D., Vliyanie stepeni goryachey plasticheskoy deformatsii na mikrostrukturu i mekhanicheskie svoistva austenitnoy vysokoprochnoy korrozionno-stoykoy stali 05Kh19N5G12AM2BF [Effect of the degree of hot plastic deformation on microstructure and mechanical properties of austenitic high-strength corrosion-resistant steel 05Kh19N5G12AM2BF], Voprosy Materialovedeniya, 2003, No 4 (36), pp. 5–11.
- 9. Schaeffler, A.L., Constitution diagram for stainless steel weld metal, Metal Progress, 1949, No 56, No. 11, pp. 680–680B.
- 10. DeLong, W.T., Ostorm, G.A., Szumachowski, E.R., Measurement and calculation of ferrite in stainless steel weld metal, Welding Journal, 1956, No 35 (11), pp. 521–528.
- 11. Hull, F.C., Delta Ferrite and Martensite Formation in Stainless Steels, Welding Journal, 1973, V. 52 (5), May, Res. Suppl., pp. 193–203.
- 12. Linnert, G. E., Welding Type 347 Stainless Steel Piping and Tubing, Welding Research Council Bulletin Series, 1958, No. 43, pp. 3–103
- Lippold, J. C., Kotecki, D. J., Welding Metallurgy and Weldability of Stainless Steels, John Wiley & Sons, 2005.
- 14. Olson, D.L., Dallam, C.B., Liu, S., Flux composition dependence of microstructure and toughness of submerged arc HSLA weldments, Welding Journal, 1985, No 64(5), pp. 140–151.
- 15. Speidel, M., High Nitrogen Steels, Proceedings of the 10th International Conference on High Nitrogen Steels, 2009, p. 121
- 16. Uggowitzer, P.J., Magdowski, R., Speidel, M.O., Nickel Free High Nitrogen Austenitic Steels, ISIJ International, V. 36, No. 7, 1996, pp. 901–908.
- 17. Allan, G., Castability, solidification mode and residual ferrite distribution in highly alloyed stainless steels, Technical Steel Research: European Commission, 1997.
- 18. Petrovič, D.S., Klančnik, G., Pirnat, M., Medved, J., Differential scanning calorimetry study of solidification sequence of austenitic stainless steel, Journal of Thermal Analysis and Calorimetry, 2011, V. 105, Is. 1, pp. 251–257.
- 19. Brooks, J.A., Thompson, A.W., Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int. Mater. Rev., 1991, V. 36, pp.16–44.
- 20. Siegel, U., Spies, H.J., Eckstein, H.J., Effect of solidification conditions on the solidification sequence of austenitic chromium-nickel stainless steels, Steel Res., 1986, V. 57, pp. 25–32, DOI 10.1002/srin.198600707.
- 21. Kazakov, A. A., Shakhmatov, A. V., Kolpishon E.Yu., Litaya struktura i nasledstvennost vysokokhromistoy stali s azotom [Cast structure and heredity of high-chromium steel with nitrogen], Tyazheloe Mashinostroyenie, 2015, No 1–2, pp. 19–24.
- 22. Martorano, M. A., Tavares, C. F., Padilha, A. F., Predicting Delta Ferrite Content in Stainless Steel Castings, ISIJ International, 2012, V. 52, No. 6, pp. 1054–1065.
- 23. Fukumoto, S., Iwasaki, Y., Motomura, H., Fukuda, Y., Dissolution Behavior of -ferrite in Continuously Cast Slabs of SUS304 during Heat Treatment, ISIJ International, 2012, V. 52, No 1, pp. 74–79
- 24. Shen, L. J., Ma, Y. L., Xing, S. Q., The Morphology and Content of δ -Ferrite in Non-Equilibrium Solidified 0Cr18Ni9 Austenitic Stainless Steel, Advanced Engineering Materials II, 2012, Vols. 535–537, pp. 666–669.
- 25. Fu, J. W., Yang, Y. S., Guo, J. J., Tong, W. H., Effect of cooling rate on solidification microstructures in AISI 304 stainless steel, Materials Science and Technology, 2008, V. 24, No 8, DOI 10.1179/174328408X295962
- 26. Saied, M., Experimental and numerical modeling of the dissolution of delta ferrite in the Fe-Cr-Ni system: application to the austenitic stainless steels. Materials. Université Grenoble Alpes, 2016. English. <NNT: 2016GREAI016>. <tel-01337983>
- 27. Ljungstrom, L. G., The Influence of Trace Elements on the Hot Ductility of Austenitic 17CrI3NiMo-Steel, Scand. J. Metall., (1977), V. 6, pp. 176–184.
- 28. Demk., H., Deformation under Hot Working Conditions, London: The Iron and Steel Institute, (1968), p. 135.
- 29. Pickering, F. B., Physical Metallurgy and the Design of Steels London, Applied Science Publishers, 1978.
 - 30. Kane, R.H., The Hot Deformation of Austenite, J.B. Balance (Ed.), New York, 1977, pp. 457-498.
- 31. Brooks, J.A., Thompson, A.W., Williams, J.C., A fundamental study of the beneficial effects of δ -ferrite in reducing weld cracking, Welding Research Supplement, 1984, March, pp. 71s–83s.

- 32. Brooks, J.A., Weldability of High N, High Mn Austenitic Stainless Steel, Welding Research Supplement, 1975, June, pp. 189s–195s.
- 33. Priceputu, I.L., Moisa, B., Chiran, A., Nicolescu, G., Bacinschi, Z., Delta Ferrite Influence in AISI 321 Stainless Steel Welded Tubes, The Scientific Bulletin of VALAHIA University: Materials and Mechanics, 2011, No 6 (year 9), pp. 87–96.
- 34. Kujanpaa, V. P., David, S. A., White, C. L., Formation of Hot Cracks in Austenitic Stainless Steel Welds–Solidification Cracking, Welding Research Supplement, 1986, August, pp. 203s–212s.
- 35. Lundin, C. D., Lee, C. H., Menon, R., Hot Ductility and Weldability of Free Machining Austenitic Stainless Steel, Welding Research Supplement, 1988, June, pp. 119-s–130-s.